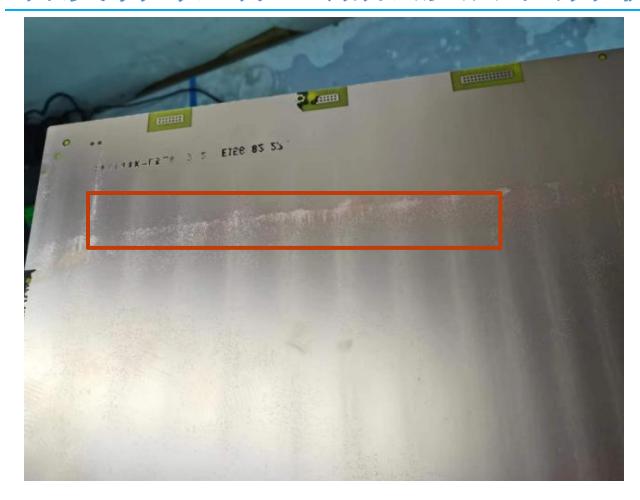


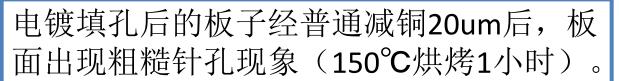
RS-316不烤板无针孔减铜剂

- 一、公司简介
 - 二、研发背景
 - 三、产品介绍
 - 四、客户使用数据
 - 五、公司优秀产品简介

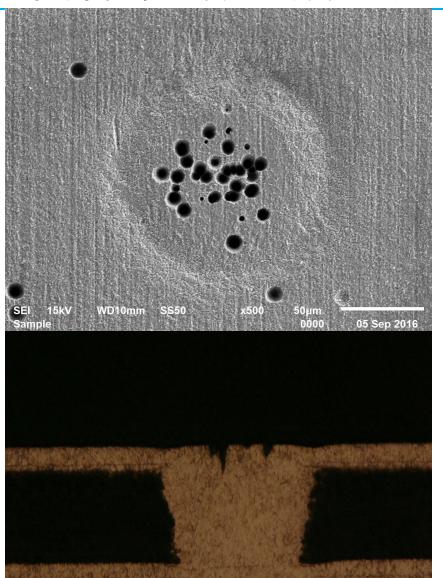
公司简介

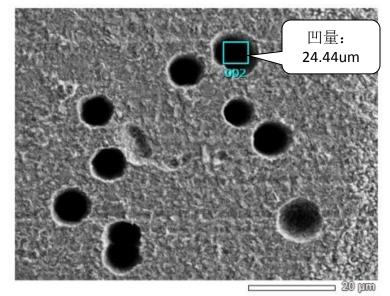
深圳市瑞世兴科技有限公司成立于2005年4月22日,注册资本2000万元,位于深圳市宝安区沙井街道后亭茅洲山工业园工业大厦全至科技创新园,是一家专业研发致力于电路板生产所需的化学品和LCD液晶玻璃用化学品,多聚亚磷酸铝阻燃材料、金刚石/铜复合导热等材料研发、生产、销售和提供解决方案的高新技术企业,2023年专精特新"小巨人"企业。


品牌情况


公司着眼于创新与改造,立志把瑞世兴科技打造成国内知名的专业的电路板处理液、电镀化学品、表面处理化学品和高分子阻燃材料研发供应商。由此,依托完整的硬件配套和先进的管理体系,公司运用新技术不断创新,**打造自主品牌"瑞世兴"**。

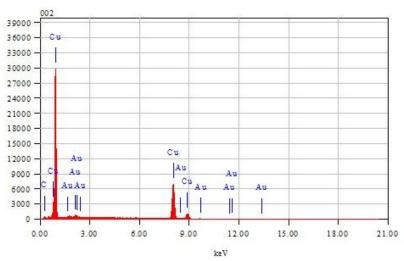
研发背景-行业痛点及原因分析





减铜后孔角被咬蚀形成空腔

研发背景-行业痛点及原因分析



Title : IMG1

Instrument : 6510 (LA)

Volt : 15.00 kV

Mag. : x 1,500

Acquisition Parameter
Instrument : 6510 (LA
Acc. Voltage : 15.0 kV
Probe Current: 1.00000
PHA mode : T3
Real Time : 38.30 s
Live Time : 30.00 s
Dead Time : 21 %
Counting Rate: 26664 c

ZAF Method Standardless Quantitative Analysis

Fitting Co	efficient :	0.1237					
Element	(keV)	Mass%	Sigma	Atom%	Compound	Mass%	Cation
CK	0.277	1.73	0.01	8.59			
Cu K	8.040	97.04	0.53	91.04			
Au M	2.121	1.23	0.11	0.37			
Total		100.00		100.00			

	实验所使用到的设备
项目	说明
实验方式	浸泡加超声波
设备	超声波、恒温
实验样品	电镀填孔板
检查设备	金相显微镜

	实验方案(测试板均电管	渡塞孔板,且不烘烤)
方案	添加剂说明	方案说明
1: A添加剂	加速添加剂	以RS-884减铜剂基础上添加添加剂
2: B添加剂	降速型添加剂	以RS-884减铜剂基础上添加添加剂
3: C添加剂	分散润湿添加剂	以RS-884减铜剂基础上添加添加剂
4: D添加剂	亚铜离子转换剂	以RS-884减铜剂基础上添加添加剂
5: 按比例C+D	分散润湿+亚铜离子抑制	以RS-884减铜剂基础上添加添加剂

方案1: A添加剂

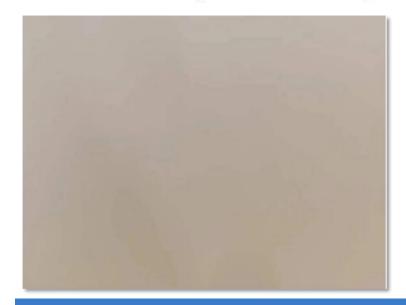
槽液项目	槽液浓度	微蚀量(um)	表面图片	塞孔直角图片
硫酸(%)	4.36		7.25	The same
双氧水 (g/I)	35.8	20		
铜离子 (g/l)	20.66		9 6	
温度(℃)	30		有针孔	孔角咬蚀

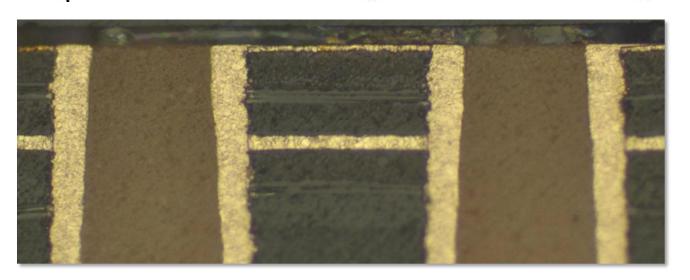
方案2: B添加剂

槽液项目	槽液浓度	微蚀量(um)	表面图片	塞孔直角图片
硫酸(%)	4.36		4020202	2007
双氧水 (g/I)	35.8	20	244	
铜离子 (g/I)	20.66			2000
温度(℃)	30	1		10 10 10 10 10 10 10 10 10 10 10 10 10 1
			有针孔	孔角咬

方案3: C添加剂

槽液项目	槽液浓度	微蚀量(um)	表面图片	塞孔直角图片
硫酸(%)	4.36		File State of the	一 子言
双氧水 (g/I)	35.8	20		Control of the Contro
铜离子(g/I)	20.66	1		
温度(℃)	30	7	有针孔	孔角咬蚀


方案4: D添加剂


槽液项目	槽液浓度	微蚀量(um)	表面图片	塞孔直角图片
硫酸(%)	4.36		to and only	10000
双氧水(g/I)	35.8	20		
铜离子 (g/I)	20.66]		
温度(℃)	30		有针孔	1角咬蚀

方案5: 按比例C+D

槽液项目	槽液浓度	微蚀量(um)	表面图片	塞孔直角图片
硫酸(%)	4.36	8	No. of the second	S22712
双氧水(g/I)	35.8	20	国企 意在是2000年的	
铜离子 (g/I)	20.66]	and a	
温度(℃)	30]		71.77
			板面 OK	孔角 OK

未烤板电镀铜减铜后表面均匀无针孔

塞孔直角处未咬蚀

方案5新减铜剂编号: RS-316电镀塞孔板无针孔减铜剂

产品介绍

RS-316是以 H_2SO_4/H_2O_2 为基础的快速铜减薄液,可以应用于**CCL**半蚀刻处理,以及其他需要快速蚀刻制程,用于电镀塞孔板减铜蚀刻处理,有以下特点:

- 1、电镀塞孔板铜减薄,无戴帽子现象,不烤板无针孔现象;
- 2、铜面亮白洁净,均匀性佳;
- 3、操作温度低,蚀刻速度快,处理时间短;
- 4、喷淋和浸泡制程均可应用;
- 5、废水处理容易;
- 6、极少浓烟、雾及刺激气味。

开缸

RS-316: 7-9%

 H_2SO_4 :

4-6%

 $35\%H_2O_2$:

8-12%

添加方式

(分析补加时RS-316: H₂O₂=1: 2) (以减5um计)

每生产100 M2板,添加RS-316: 8-10 L

 H_2SO_4 : 10-15 L

 $35\%H_2O_2$: 20-30 L

也可使用自动添加:按上述比例配制好一定浓度的预添加剂,按生产板的数量进行补加。

更槽标准:铜离子达到40g/L时,排掉2/3药液,保留部分母液,补加水和各药水。

客户现场实际使用数据-现场参数

管控参数

槽名	管制项目	控制范围	添加方式	换槽频率	分析频率
除油	H2SO4	3-5%	分析补加	次/周	1次/班
	H2SO4 4				
	H2O2	40-70g/L	根据做板量自动添加及分析补加,铜离子	次/月	
	Cu2+	0-40g/L	达40g/L时排5/6槽液,		2次/班
减铜	温度	35±3° C	按比例配槽		
	水刀流量	60±20L/min			
	烘干温度	85 <u>+</u> 5° C			
全线	线速	1-5M/min	根据减铜量调整		

测试减铜 7.5um、10um、15um、30um 的减铜均匀性,常规标准如下:

减铜厚度	减铜均匀性	极差
5um	≥95%	≤1um
5-15um	≥95%	≤2um
15-30um	≥95%	≤4um

客户现场实际使用数据-减铜均匀性

减铜 7.5um (使用 0.5OZ 基板减铜 1 次, 线速 4m/min)

		上机	反面				下板面				
					减铜前铜	厚(um)					
上	位板面平均位	值		17.59		下	板面平均	值:		17.93	
					减铜后铜	厚(um)					
10.03	10.18	10.18	10.23	10.30	10.13	10.72	10.67	10.49	10.43	10.46	10.73
9.85	9.80	10.08	9.88	10.30	10.30	10.89	10.52	10.58	10.27	10.78	10.80
10.16	10.32	10.42	10.07	9.70	9.97	10.72	10.72	10.30	10.26	10.66	10.76
9.90	10.25	10.01	9.79	9.85	9.86	10.93	10.70	10.32	10.79	10.56	10.48
10.19	10.14	9.67	9.90	9.94	10.10	10.58	10.75	10.76	10.30	10.71	10.19
					减铜量	量(um)					
7.56	7.41	7.41	7.36	7.29	7.46	7.21	7.26	7.44	7.50	7.47	7.20
7.74	7.79	7.51	7.71	7.29	7.29	7.04	7.41	7.35	7.66	7.15	7.13
7.43	7.27	7.17	7.52	7.89	7.62	7.21	7.21	7.63	7.67	7.27	7.17
7.69	7.34	7.58	7.80	7.74	7.73	7.00	7.23	7.61	7.14	7.37	7.45
7.40	7.45	7.92	7.69	7.65	7.49	7.35	7.18	7.17	7.63	7.22	7.74
MAX		7.92	STD		0.20	MAX		7.74	STD		0.20
MIN		7.17	AVE		7.54	MIN		7.00	AVE		7.34
COV	9	97.35%	R		0.75	COV		97.23	R		0.74

单次减 7.5um ,上板面标准偏差 0.20um ,均匀性 97.35% ,极差 0.75um ,下板面标准偏差 0.20um 。均匀性 97.23% ,极差 0.74um 。

客户现场实际使用数据-减铜均匀性

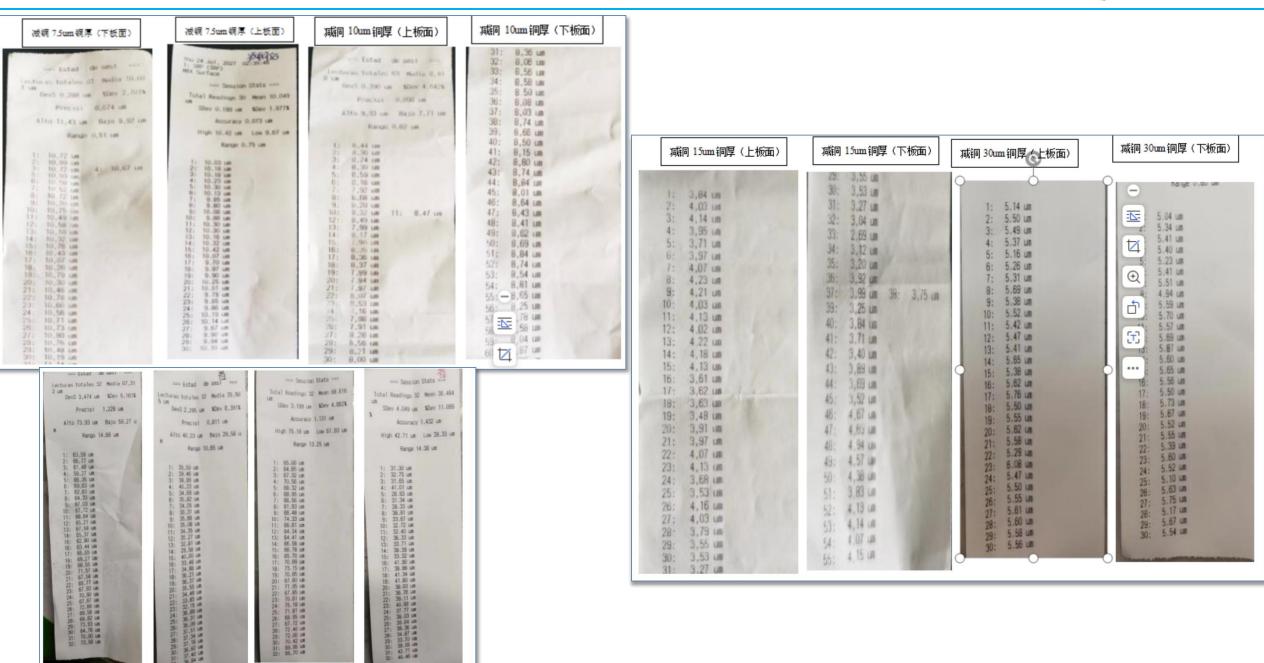
减铜 15um 均匀性(使用 0.5OZ 基板减铜 1 次, 线速 2m/min)

				• 4 1 1 1 1	C/13 0:00E						
上板面							下机	反面			
					减铜前铂	洞厚(um)					
上	板面平均位	值		18.89			扳面平均	值:		18.74	
					减铜后铂	洞厚(um)					
3.84	4.03	4.14	3.95	3.71	3.97	3.37	3.84	3.69	3.72	3.90	3.92
4.07	4.23	4.21	4.13	4.13	4.02	3.99	3.35	3.84	3.71	3.40	3.89
4.22	4.18	4.13	3.61	3.62	3.63	3.69	3.52	4.07	3.69	3.94	3.57
3.48	3.91	3.97	4.07	4.13	3.68	3.38	3.83	4.13	4.04	4.07	3.92
3.53	4.16	4.03	3.79	3.55	3.53	3.85	3.88	4.01	4.03	3.97	3.85
					减铜量	量(um)					
15.05	14.86	14.75	14.94	15.18	14.92	15.37	14.90	15.05	15.02	14.84	14.82
14.82	14.66	14.68	14.76	14.76	14.87	14.75	15.39	14.90	15.03	15.34	14.85
14.67	14.71	14.76	15.28	15.27	15.26	15.05	15.22	14.67	15.05	14.80	15.17
15.41	14.98	14.92	14.82	14.76	15.21	15.36	14.91	14.61	14.70	14.67	14.82
15.36	14.73	14.86	15.10	15.34	15.36	14.89	14.86	14.73	14.71	14.77	14.89
MAX		15.41	STD		0.24	MAX		15.39	STD		0.22
MIN		14.66	AVE		14.97	MIN		14.61	AVE		14.94
COV		98.37%	R		0.75	COV		98.50%	R		0.78

单次减 15um,上板面标准偏差 0.24um.均匀性 98.37%,极差 0.75um,下板面标准偏差 0.22um,均匀性 98.50%,极差 0.78um。

客户现场实际使用数据-减铜均匀性

减铜 30um (使用 10Z 基板减铜 2 次, 线速 2m/min)

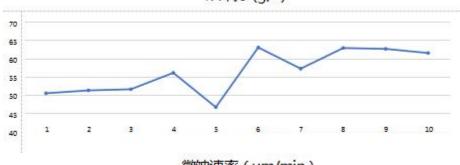

				./ 1 102 3	全似人则以可归 4		<u> </u>				
上板面					下板面						
减铜前铜厚(um)											
上板面平均值		35.72		下板面平均值:			35.59				
减铜后铜厚(um)											
5.14	5.50	5.49	5.37	5.16	5.26	5.04	5.34	5.41	5.40	5.23	5.41
5.31	5.69	5.38	5.52	5.42	5.47	5.51	4.94	5.59	5.70	5.57	5.69
5.41	5.65	5.38	5.62	5.76	5.50	5.97	5.60	5.65	5.56	5.50	5.73
5.55	5.62	5.58	5.29	6.08	5.47	5.67	5.52	5.55	5.39	5.60	5.52
5.50	5.55	5.61	5.60	5.58	5.56	5.10	5.63	5.75	5.17	5.67	5.54
减铜量(um)											
30.58	30.22	30.23	30.35	30.56	30.46	30.55	30.25	30.18	30.19	30.36	30.18
30.41	30.03	30.34	30.20	30.30	30.25	30.08	30.65	30.00	29.89	30.02	29.90
30.31	30.07	30.34	30.10	29.96	30.22	29.42	29.99	29.94	30.03	30.09	29.86
30.17	30.10	30.14	30.43	29.24	30.25	29.92	30.07	30.04	30.20	29.99	30.07
30.22	30.17	30.11	30.12	30.14	30.16	30.49	29.96	29.84	30.42	29.92	30.05
MAX		30.58	STD		0.18	MAX		30.65	STD		0.22
MIN		29.64	AVE		30.22	MIN		29.72	AVE		30.10
COV	9	99.39%	R		0.94	COV		99.27	R		0.93

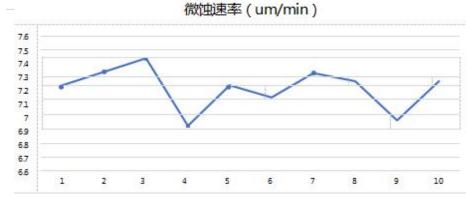
两次减 30um,上板面标准偏差 0.18um,均匀性 99.39%,极差 0.94um,下板面标准偏差 0.22um。均匀性 99.27%,极差 0.93um。

客户现场实际使用数据-CMI测试数据

68.95 cm 67.72 us 72.40 us 72.00 us 70.42 us

客户现场实际使用数据-药水稳定性




从9月14日开始批量生产电镀塞孔板,采用手动添加及分析添加方式,硫酸、双氧水、微蚀速率稳定

时间	硫酸(%)	双氧水(g/L)	铜离子(g/L)	微蚀速率(um)
2023/9/14 8:30	6.65	50.49	8.26	7.22
2023/9/15 14:00	6.25	51.29	22.24	7.32
2023/9/16 8:30	6.62	51.6	24.14	7.42
2023/9/16 17:30	6.25	56.1	25.41	6.92
2023/9/18 20:00	7.05	46.68	28.6	7.22
2023/9/19 9:00	6.38	63.07	3.17	7.31
2023/9/20 8:30	5.66	57.24	19.7	7.25
2023/9/20 19:00	5.32	62.91	41.3	6.96
2023/9/21 2:00	7.05	62.68	8.26	7.25
2023/9/21 13:30	6.51	61.54	14.61	7.13

使用期间手动添加微蚀速率控制在6.9-7.5um/min之间,相信使用 自动添加后会更稳定

客户现场实际使用数据-客户总结

六、总结

- 6.1 通过以上减不同铜厚测试可见减铜剂 RS-316减铜均匀性及极差远优于业界常用标准,生产中未烤板且未发现针孔问题;
- 6.2 9月14日-9月21日共生产减铜板9724pml, 其中 电镀塞孔减铜板 共计3648pml 经品质工艺等确认品质正常 达到生产需求;

依据以上评估的,瑞世兴减铜剂 RS-316减铜均匀性符合产品对减铜的品质需求,建议导入使用。

公司其他优秀产品简介

编号	中文名	简介
RS-314	电镀铜减薄无针孔减薄剂	电镀后减铜无针孔,降低烤板时间,提升生产效率
RS-859	悬铜去除剂	减少铜窗支出,提高电镀填孔效率,修整孔型
RS-2830	有机去膜液	渗透力强,去膜速度快,减少夹膜
RS-AP-5	铜镍剥挂具剂	剥除彻底,剥挂速度快,自分解小,环保
RS-882	超粗化液	微蚀量稳定,粗糙度大,板面颜色均匀,单耗低
RS-883	中粗化添加剂	特别适用于线路干膜前处理,结合力好,提升线路良率

深圳市瑞世兴科技有限公司

谢谢您的观看!